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Real-gas effects in very weak shock waves in the 
atmosphere and the structure of sonic bangs 

By J. P. HODGSON AND N. H. JOHANNESEN 
Department of the Mechanics of Fluids, University of Manchester 

(Received 12 March 1971) 

An approximate expression is given for the thickness of weak fully dispersed 
shock waves. Using available data on the thermodynamic properties of air, it is 
shown that shocks of the strength expected in sonic bangs are fully dispersed. 
Estimated relaxation times for dry and humid air lead to wide variations in 
possible thickness, varying from millimetres to metres. 

It is well known that a shock wave in a gas with slow internal modes of energy 
is fully dispersed if the wave speed lies between the equilibrium and frozen sound 
speeds. Such waves have on the whole been treated as interesting phenomena of 
no great practical importance and the aerodynamicists have tended to ignore 
real-gas effects in air at moderate speeds and temperature and looked a t  them as 
essentially high-speed and high-temperature effects. The acousticians, on the 
other hand, have looked at  non-equilibrium effects in sound waves as being 
essentially frequency-dependent dispersion and attenuation effects. 

It is the purpose of this note to point out that the non-ideal gas effects in real 
air may be sufficiently large to make the sonic-bang shock waves fully dispersed 
and their thickness several orders of magnitude greater than predicted by the 
classical theories of shock wave structure. It should be emphasized that the 
present note is essentially concerned with the structure of a single shock wave and 
that the implications for the structure of the N-wave system reflected from the 
ground are necessarily tentative at this stage. We hope to make the point, how- 
ever, that non-equilibrium effects cannot necessarily be ignored in discussions 
of the detailed structure of sonic bangs. 

Consider a fully dispersed wave in a co-ordinate system fixed in the wave and 
with the z axis in the direction of flow, and let suffixes 1 and 2 refer to conditions 
far upstream and far downstream of the wave, respectively. If it is assumed that 
the rotational and translational modes of energy are always in mutual equi- 
librium and that normal viscosity and heat-transfer effects are negligible, the 
conservation equations are in the usual notation 
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Here cp is the frozen specific heat a t  constant pressure and 

The rate equation is 

is the vibrational 
contribution to the specific internal energy. 

(4) d(T/dt = p$(3 - (T), 

where 3 is the local equilibrium value of the vibrational energy and p$ is the 
relaxation frequency (inverse relaxation time). The equation of state is 

~p = pRT (5) 

(6) 

and the equilibrium value of the vibrational energy may be written as 
- 
(T = (T,+GR(T - Tl), 

where cR is the difference between equilibrium and frozen specific heats. Because 
the temperature variation in fully dispersed waves in the atmosphere is small 
(only a few hundredths of a O K )  it is permissible to take $ and c as constants 
equal to their initial values 

The system of equations (1) to (6) can be solved for any of the six variables 
p ,  p ,  u, T ,  (T, and if, provided the wave is fully dispersed and hence without 
discontinuities. The precise condition for this is that the frozen Mach number Ml 
lies in the interval given by 

and cl. 

where y is the frozen value of the specific heat ratio. The lower limit corresponds 
to the equilibrium Mach number Me, = 1 and hence gives an infinitely weak wave. 
The upper limit corresponds to the strongest possible fully dispersed wave. 

Using the fact that dldt = ud/dx we get, after some straightforward algebra, 
the differential equation describing the velocity distribution through the wave 

( 7 )  
P 1 A  dx - 2 v q y  + 1 ) M,2 v - ( 1 + 7W-j 
u1 dV M,2[(y+1)+2(y-l)c,][V,- V][V-&]’  

where V = u/ul. Equation (7 )  was essentially derived by Lighthill (1956, equation 
(232)), and can of course be integrated to find the structure of the wave as done 
approximately by Lighthill (1956, equation (237)). However, in this note we are 
mainly interested in finding an overall measure for the thickness of the wave. 

It is normal practice to define this thickness in terms of the maximum slope as 

However, in fully dispersed waves it is found that the inflexion point moves from 
the centre of the wave for an infinitely weak wave to the front of the wave for a 
fully dispersed wave of maximum strength (wave speed equal to frozen speed of 
sound). 

The standard definition of thickness does not therefore give representative 
values. Instead we use the definition 

The thickness thus defined is always comparable with a boundary-layer type 
thickness, say from K- V = O - l ( V , - & )  to V,- V = 0.9(K-&). 
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A further considerable amount of simple algebra gives 

19 

approximate expression 
% c ~ ( Y  - 1)' 

P141Y(M%1- 1)' 
A =  

where subscript e refers to equilibrium and we have made use of the fact that 

Now 

where 2ye/(ye+ 1) can be put equal to 2y/(y+ 1). With y = $- we finally get the 
approximate expression 

A =  8UlPlCl 
~ ~ P ~ G U P ,  -PI). 

It is not a difficult matter to calculate the contributions to c1 for each of the 
constituents of the atmosphere. The harmonic oscillator model of the vibrational 
energy modes may be used with confidence. It is found that c1 is dominated by 
the oxygen contribution which is at least five times that from either nitrogen or 
water vapour in the temperature range of interest. All the other constituents 
make a negligible contribution owing to their minute concentrations. 

It was pointed out by Knudsen (1933, 1935) that the absorption of sound in 
air was due largely to the presence of oxygen. He found that the relaxation 
frequency of oxygen depended very strongly on the water vapour content. 
Tuesday & Boudart (1955) showed that the resonance between the vibrational 
energy levels of oxygen and those of the v2 mode of water vapour was sufficient to 
explain this strong dependence. Their theory and experiments demonstrated that 
the relaxation frequency of humid oxygen was a quadratic function of the mole 
fraction of water vapour. 

Henderson & Herzfeld (1965) reviewed data on sound absorption in humid air 
and oxygen. They showed that the effect of nitrogen on the relaxation frequency 
of oxygen in air could not be ignored. 

Further experiments have been made by Monk (1969) over a wider range of 
water vapour concentration. He concluded that Henderson & Herzfeld over- 
estimated the relaxation frequency in air for mole fractions of water vapour 
greater than about 0.002. Monk gave an empirical expression based on a modified 
form of Henderson & Herzfeld's theory for the frequency of maximum sound 
absorption in humid air due to the vibrational relaxation of oxygen. He claims 
reasonable accuracy over almost the complete humidity range but recommends 
Henderson & Herzfeld's quadratic (obtained from experiments by Harris (1963)) 
for mole fractions less than 0.002. 

Since the relaxation frequency of nitrogen is an order of magnitude lower than 
that of oxygen, and since nitrogen is less affected by water vapour (Piercy 1969), 
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we assume here for simplicity that the internal energy of nitrogen remains frozen 
throughout the wave. The width of the wave as defined by equation (8) would not 
be much affected by the relaxation of nitrogen but the width as defined by the 
separation of the two points O.l(V,- V,) and 0*9(V,-V,) might be considerably 
larger. 

Water vapour has a very high relaxation frequency (according to Henderson & 
Herzfeld) and is assumed to be everywhere in local equilibrium. 

The value of c1 for atmospheric oxygen varies from 0.0037 at 270°K to 
0.0069 a t  300 OK. An immediate consequence is that shock waves in the atmo- 
sphere are fully dispersed if the pressure jump across them is less than l*Olb/ft2 
or 1-9 Ib/ft2 at the two temperatures. Since the sonic bang experienced at ground 
level is that of a reflected shock wave, the bang pressure increases would be twice 
these values. However, it should be made clear that if the waves are stronger than 
this the pressure change in the relaxation region of the resulting partially 
dispersed wave may still dominate the profile. 

The relaxation frequency (pl&) of dry air is 850sec-l, and this, according to 
Monk, may increase by a factor of 1000 in hot humid conditions, owing primarily 
t o  the increased quantity of water vapour. Since the saturated vapour pressure 
of water is a sensitive function of the ambient temperature, atmospheric waves 
in saturated conditions will be wider at lower temperatures. 

For a sonic bang of pressure jump 1 lb/ft2 the shock wave (of half that strength) 
will have a bhickness between 6 m and 6 mm at  300 OK and between 3 m and 
30 mm at 270 OK for the range of values of pl$, suggested. 

The width of the pressure wave on the ground will be increased by a geometric 
factor equal to the Mach number of the aircraft defined in terms of the speed of 
sound at ground level. 
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